Structural-break Models under Mis-specification: Implications for Forecasting
نویسندگان
چکیده
This paper revisits the least squares estimator of the linear regression with a structural break. We view the model as an approximation to the true data generating process whose exact nature is unknown but perhaps changing over time either continuously or with some jumps. This view is widely held in the forecasting literature and under this view, the time series dependence property of all the observed variables is unstable as well. We establish that the rate of convergence of the estimator to a properly defined limit is much slower than the standard super consistent rate, even slower than the square root of the sample size T and as slow as the cube root of T. We also provide an asymptotic distribution of the estimator and that of the Gaussian quasi likelihood ratio statistic for a certain class of true data generating process. We relate our finding to current forecast combination methods and bagging and propose a new averaging scheme. The performance of various contemporary forecasting methods is compared to ours using a number of macroeconomic data.
منابع مشابه
The Contribution of Structural Break Models to Forecasting Macroeconomic Series
This paper compares the forecasting performance of different models which have been proposed for forecasting in the presence of structural breaks. These models differ in their treatment of the break process, the model which applies in each regime and the out-of-sample probability of a break occurring. In an extensive empirical evaluation involving many important macroeconomic time series, we de...
متن کاملA Comparison of Forecasting Procedures for Macroeconomic Series: The Contribution of Structural Break Models
This paper compares the forecasting performance of different models which have been proposed for forecasting in the presence of structural breaks. These models differ in their treatment of the break process, the parameters defining the model which applies in each regime and the out-of-sample probability of a break occurring. In an extensive empirical evaluation involving many important macroeco...
متن کاملTime series forecasting: model evaluation and selection using nonparametric risk bounds
We derive generalization error bounds — bounds on the expected inaccuracy of the predictions — for traditional time series forecasting models. Our results hold for many standard forecasting tools including autoregressive models, moving average models, and, more generally, linear state-space models. These bounds allow forecasters to select among competing models and to guarantee that with high p...
متن کاملNonparametric Risk Bounds for Time-Series Forecasting
We derive generalization error bounds for traditional time-series forecasting models. Our results hold for many standard forecasting tools including autoregressive models, moving average models, and, more generally, linear state-space models. These non-asymptotic bounds need only weak assumptions on the data-generating process, yet allow forecasters to select among competing models and to guara...
متن کاملImplications of Cointegration for Forecasting: A Review and an Empirical Analysis
Cointegration has different theoretical implications for forecasting. Several empirical studies have compared the out of sample forecasting performance of cointegrted VECMs against unrestricted VARs in levels and in differences. The results of these studies have been generally mixed and inconclusive. This paper provides a comprehensive review over the subject, and also examines the effects...
متن کامل